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– 3 pentagonal form of the strong conjecture: for each non-pentagonal 

integer k there exist an integer m and a divisor d of m² such that 6k+m+d=0 

modulo 4m-1   [8]. 

– 4 the form of irreducible Pythagorean triples, given by the theorem 5 

above, equivalent to the weak form. 

– 5 the form based on the 1 and 2-twin Pythagorean triples. 

 Etc.... 

Note first that the strong conjecture (- 1 above) has been verified for all p 

<10^17, so the forms 2, 3, 4 are also, by cons the form 5, stronger than the weak 

conjecture is not comparable to the strong. 

From an heuristic point of view, the strong and weak forms (and those 

equivalent) collides with the wall, apparently unbridgeable, of arithmetic 

progressions of solutions (see the Jacobi symbol and the exemplary work of 

Yamamoto [5] published more than 45 years ago). For example solving the 

strong conjecture is equivalent to classify and therefore be familiar with the non-

pentagonal numbers; little is known about them. By cons the form based on 

Pythagorean triples has the advantage of relying on the area best known of these 

irreducible triples, and especially for the last form based on the 1 and 2-twin 

Pythagorean triples can rely on theorems concerning the generation of all 

irreducible Pythagorean triples from (4,3,5) and (3,4,5), [9]. We think that the 

technical lemmas above rested upon this fact. 
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